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a b s t r a c t

In the present work a new application of third-order multivariate calibration algorithms is presented, in
order to quantify carbaryl, naphthol and propoxur using kinetic spectroscopic data. The time evolution of
fluorescence data matrices was measured, in order to follow the alkaline hydrolysis of the pesticides
mentioned above. This experimental system has the additional complexity that one of the analytes is the
reaction product of another analyte, and this fact generates linear dependency problems between
concentration profiles. The data were analyzed by three different methods: parallel factor analysis
(PARAFAC), unfolded partial least-squares (U-PLS) and multi-dimensional partial least-squares (N-PLS);
these last two methods were assisted with residual trilinearization (RTL) to model the presence of
unexpected signals not included in the calibration step. The ability of the different algorithms to predict
analyte concentrations was checked with validation samples. Samples with unexpected components,
tiabendazole and carbendazim, were prepared and spiked water samples of a natural stream were used
to check the recovered concentrations. The best results were obtained with U-PLS/RTL and N-PLS/RTL
with an average of the limits of detection of 0.035 for carbaryl, 0.025 for naphthol and 0.090 for
propoxur (mg L�1), because these two methods are more flexible regarding the structure of the data.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Owing to the current technological development, analytical
instrumentation provides increasing possibilities to obtain large
amounts of data in a system under study. This increase of
information is obtained by simultaneously measuring various
properties of the system, thus resulting in data of increasingly
higher number of modes. In analytical calibrations, increasing the
dimensionality of the data generates different benefits. First-order
multivariate methods allow quantification of analytes even in the
presence of interferences, but require that they be represented
sufficiently in the calibration step, which involves a tedious task. It
has the benefit of allowing one to diagnose a sample containing
uncalibrated components as an outlier, because its spectrum is
adjusted with significant error to the calibration model. This
property is called the first-order advantage [1]. Despite this, it
may be noted that although outlying samples are detected, the
predictions are incorrect due to the presence of an uncalibrated
component in the sample. Only second-order data (or higher, as

the third-order data studied in this work) are appropriate for
modeling the information from a sample containing uncalibrated
components, obtaining correct predictions. This property is known
as the second-order advantage [1]. Calibrations with higher-orders
(third-order or higher) allow one to increase the selectivity and
sensitivity of a technique [2]. Currently the bibliographic informa-
tion on the subject is extensive, both theoretical and applied to
methods of first- and second-order, but there are few examples in
which third-order algorithms are applied to real systems.

The application of multivariate calibration models to data
from third-order or greater is continuously growing and applied
to various research fields [3–5]. The inclusion of an extra mode in
the data, as previously mentioned, increases the selectivity and
sensitivity of the analysis by the inclusion of additional information
of the sample. In the case under study, this extra mode was
obtained by measuring the time evolution of the fluorescence
emission–excitation matrices (EEMs). There are only a few works in
relation to the processing of time-dependent EEM data, used for
the determination of one or more analytes present in complex
matrices. Few examples of modeling third-order data are the
oxidation of catecholamines [6], mixtures of folic acid or leucovorin
with methotrexate [7–10], the alkaline hydrolysis of procaine [11],
the alkaline hydrolysis of carbaryl [12,13], the derivatization of
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malondialdehyde [14], and the photochemical degradation of
several pesticides [15], polycyclic aromatic hydrocarbons [16] and
folic acid and its two principal metabolites [17].

In this work a technique is developed and optimized for
determining three analytes simultaneously by multivariate cali-
bration methods of third order. Currently the increased production
and use of chemical compounds have given rise to a growing
concern about the effect that these compounds may have on
terrestrial and aquatic ecosystems. Because of their chemical
characteristics, pesticides are in most cases persistent pollutants
that resist in varying degrees, photochemistry degradation, both
chemical and biochemical, so their half-lives in the environment
can be high [18–20]. The application of synthetic pesticides has
been a routine practice in agriculture in the last fifty years. The
indiscriminate use given in the past to these compounds has
produced at present residues which are detected in the environ-
ment, with potential risks associated with public health [21].
Pesticides can be a component of urban waste water. The major
source of water pollution with pesticides comes from agricultural
practices, waste water from agricultural industries or waste water
from pesticide manufacturing plants.

Pesticides that were studied in this work belong to the family of
carbamates. Carbamates are synthetic organic substances formed
by a nitrogen atom attached to a carbamic acid, which acts as a
leaving group. This may have a neurotoxic effect in the corre-
sponding dose, leading to death. Their main features are high
toxicity, relatively low chemical stability and moderate accumula-
tion in tissues. From the family of carbamates, carbaryl and
propoxur were analyzed together with naphthol because any
correct technique for the determination of carbaryl should include
the latter, because it is the product of its hydrolysis. Naphthol is
the major metabolite of chemical hydrolysis and degradation of
carbaryl. It is a mutagenic compound that causes irritation of the
respiratory system. Its presence indicates prior contamination of
water samples with carbaryl.

There are various analytical methods, previously reported for
the determination of pesticides based on high performance liquid
chromatography (HPLC) [22,23]. However, although HPLC techni-
ques are selective and sensitive, they have some disadvantages, as
they require expensive equipment, sometimes toxic solvents and
complicated pre-treatments of samples. Thus, here it is developed
as an alternative kinetic spectroscopic technique for determining
the analytes by chemometrics, presenting it as more accessible
and less toxic for routine laboratories.

In this paper, we developed a fluorescent kinetic method,
chemometrics-assisted for the determination of carbaryl, naphthol
and propoxur in water samples. It is based on third-order data,
obtained by measuring the time evolution of the EEMs of the
alkaline hydrolysis of these pesticides for each sample and then
analyzed with three different algorithms [24]: parallel factor
analysis (PARAFAC), unfolded partial least-squares (U-PLS) and
multi-dimensional PLS (N-PLS); these last two assisted with
residual trilinearization (RTL).

2. Chemometric methods

2.1. Parallel factor analysis (PARAFAC)

In this multivariate method the matrices are called Xc,i, corre-
sponding to the data for calibration, and for each unknown sample
there is an Xu array. These can be grouped to form an array X, if the
original data is of third order (as in the case in study), the latter
will have four ways. If the individual matrices are of size J�K� L,
such as in the kinetic evolution of emission–excitation fluores-
cence matrices (where J is the number of emission wavelengths,

K is the number of excitation wavelengths and L is the number of
temporal data), the dimensions of X are (Iþ1)J�K� L (I is the
number of calibration samples).

In the PARAFAC model a generic element Xijk of the array X is
defined as [25]

X ijkl ¼ ∑
N

n ¼ 1
anibnjcnkdnlþE ijkl ð1Þ

where N is the total number of chemical components which
produces the response or signal, Eijkl is an element of the residual
error E (with the same dimensions as X), ani, bnj cnk and dnl are
elements of the column vectors an, bn, cn and dn corresponding to:
relative concentrations [(Iþ1)1], profiles of emission (J�1), exci-
tation (K�1) and temporal (L�1) for each of the N components,
respectively. The column vector an is stored in the A matrix of
scores (containing the relative concentrations of the components),
and the column vectors bn, cn and dn are stored in the matrices of
loadings B, C and D (with columns normalized to unity). The
structure of the model Eq. (1) is called quadrilinear. The decom-
position of X provides the loadings and the scores of the individual
components of the whole mixture, whether they are chemically
known or not, being the base of being able to achieve the second-
order advantage. The decomposition is normally carried through
an optimization scheme by alternating least-squares (least-squares
alternating, ALS) [26,27].

To apply the PARAFAC model in multivariate calibration the
following steps should be taken into account (1) set the number of
factors which cause the response signal, (2) identify specific
components from the information provided by the model, and
(3) calibrate the model to obtain the absolute concentrations of a
particular component in an unknown sample. The optimal number
of factors can be estimated by several methods; in this work it was
carried out by observing the reduction of least-squares residues of
the PARAFAC fit. The number of components is taken as the
number for which the residual is stabilized at a value close to
the instrumental noise. The identification of the chemical compo-
nents under investigation is achieved by comparing the three
profiles estimated as emission, excitation and kinetic profiles of
solutions of the analytes of interest. This is necessary because the
components obtained by the decomposition of X are ordered
according to their contribution to the spectral variance and this
order is not necessarily maintained when changing the unknown
sample.

PARAFAC fits Eq. (1) using an ALS procedure, which requires
initial values of the four matrices A, B, C and D. This is usually
accomplished using direct trilinear decomposition (DTLD) when
the X array is three-way or from vectors obtained by singular value
decomposition (SVD) for four-way arrangements.

The absolute concentrations of analytes are obtained after
calibration, since the decomposition of X only provides relative
values. This is done using the information of the composition of
the calibration samples. Using Eq. (1), once the scores of the
components were obtained, those of standard samples associated
with a particular component are linearly related to the nominal
concentrations of the analytes

½an1jan1j⋯janI� ¼ kPARAFACy ð2Þ
where n identifies a PARAFAC component, and y is a vector (I�1)
containing the nominal concentrations of the analyte in the I
calibration standards. The concentration of the analytes in the
unknown sample is then estimated from

yu ¼ anðIþ1Þ=kPARAFAC ð3Þ
where kPARAFAC comes from Eq. (2).

For details of restrictions on the application of PARAFAC to
kinetic-spectrophotometric data, see Refs. [28–32].
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2.2. Partial least-squares (PLS)

PLS is a soft model, because the mathematical system proposed
for the resolution and quantification of an analyte does not follow
a hard physicochemical law. It is an algorithm developed for first-
order data, but newer versions are already extending to higher-
orders (N-PLS and U-PLS, see below).

A first-order system generates an X calibration matrix (size
I� J, I mixtures of known composition and J sensors in one mode).
The PLS model equation for this type of system would be

XI�J ¼ TI�AP
T
A�JþEI�J ð4Þ

To solve this equation an iterative algorithm is used, which
performs compression of the information contained in the data
matrix X into a smaller one of scores T, in order to minimize the
effect of noise E. The matrix P of Eq. (4) is known as the matrix of
PLS. The PLS algorithm also provides a matrix W, of identical size
to P, which is known as the weight loading matrix.

The parameter A (number of latent variables) can be selected
by techniques such as cross-validation, leaving a sample out,
as suggested by Haaland and Thomas, and described in the
literature [33].

The information of the concentration of analyte in the calibra-
tion samples is used in the calibration step, excluding unknown
sample data, to obtain the vector v of regression coefficients,
which is then used for prediction of unknown samples. During the
prediction step, the concentration of each analyte in the unknown
sample is quantified determining their scores tu from its measured
data xu (a vector, since data being studied are first order). The
concentrations of the different components of the unknown
mixture are determined from the scores (tu) and the vector v
obtained in the calibration using the following equation:

yu ¼ tTuv ð5Þ

2.2.1. Unfolded partial least-squares (U-PLS)
This algorithm works similarly to that described for PLS, but

unlike this it allows one to operate with data with orders higher
than one. The concentration information was introduced in the
calibration step again (excluding unknown sample data) in order
to obtain two kinds of latent variables: the factors in the matrix P
and the factors in the matrix W. These are estimated from the I
calibration samples, which are formed by three-dimensional
arrays X (J�K� L), and the vector y of calibration of concentra-
tions (I�1, where I is the number of calibration samples).

However, U-PLS does not work with X arrangements stacked in
tetradimensional arrangements, but it unfolded there, which is the
vectorization and brings in a new matrix Z:

Z¼ ½vecðXJKL;1ÞjvecðXJKL;2Þj⋯jvecðXJKL;IÞ� ð6Þ
The symbol vec( � ) denotes application of the vectorization

operator, which converts the J�K� L arrangements in JKL�1vec-
tors. The objective of the vectorization is to obtain a second-order
tensor Z, which is able to apply the PLS procedure. Then, the
matrix Z (JKL� I) is decomposed into the respective matrices P and
W (both of identical size JKL�A, where A is the number of latent
factors) and the vector of the regression coefficients v (A�1)
analogously to conventional PLS. If calibration is accurate, and
there are no unexpected components, the analytics concentration
of a species in an unknown sample can be predicted with the
vector v using the following relation as in PLS:

yu ¼ tTuv ð7Þ
where tu is the score vector of the unknown sample, obtained in
an appropriate projection of the unfolded data into the matrices of

the calibration loadings (space of A latent factors):

tu ¼ ðWTPÞ�1WTvecðXuÞ ð8Þ
If unexpected components are present in the sample, the scores

obtained by Eq. (8) are inappropriate for the prediction of analyte
concentration using Eq. (7), and residues in the PLS prediction
stage [sp, in Eq. (9) below] are significantly higher than the
instrumental noise level.

sp ¼ jjepjj=ðJKL–AÞ1=2 ¼ jjvecðXuÞ–ðWTPÞ�1WTvecðXuÞjj=ðJKL–AÞ1=2
ð9Þ

where || � || denotes the Euclidean norm. This situation can be
solved with RTL as discussed below for N-PLS, since both U-PLS
and N-PLS processed higher-order information, but on its way to
work do not exploit the second-order advantage.

2.2.2. Multi-dimensional partial least-squares (N-PLS)
The N-PLS method can be applied to third-order data without

unfold. It employs the I calibration data arrays with the original
structure together with the vector y of standard concentrations
(size I�1) to obtain the group loadings Wj, Wk and Wl (with their
respective sizes J�A, K�A and L�A, where A is the number of
latent factors) as well as the regression coefficients v (size A�1).
If the unknown sample does not contain any unexpected
components, v can be used to estimate the analyte concentration
according to

yu ¼ tTuv ð10Þ
where tu is the vector of scores of the unknown sample obtained
by the appropriate projection of the unknown data in the matrices
of the calibration loadings. If in the unknown sample are pre-
sented unexpected components, the scores obtained are inade-
quate for prediction of analyte by Eq. (10). In this case, the residues
from N-PLS phase prediction [sp, see Eq. (11) below] are abnor-
mally large compared with the typical instrument noise level

sp ¼ ‖ep‖=ðJKL�AÞ1=2 ¼ ‖vecðXuÞ�vecðX̂uÞ‖=ðJKL�AÞ1=2 ð11Þ
where X̂u is the data array of third-order of the (Xu) sample, rebuilt
by the N-PLS model and || � || denotes the Euclidean norm. This
again can be handled with an additional procedure called residual
trilinearization.

2.2.3. Residual trilinearization (RTL)
The residual trilinearization models the effects of unexpected

component of samples for correct concentration prediction
analogous to RBL (Residual Bilinearization) only extends to one
more mode. This analysis is based on the Tucker3 model of the
unexpected component effects [7]. RTL minimizes the residual
error calculated by fitting the data of the sample to the sum of
relevant contributions:

Xu ¼ reshapeftu½Wjj � jWkÞj � jWl�gþTucker3ðX̂u�XuÞþEu ð12Þ
where ‘reshape’ indicates the transformation of a vector JKL�1 in
a three-dimensional array of size J�K� L, and |� | indicates the
operator Kathri-Rao [27]. It uses the weight loadings (or heavy
loadings vectors) Wj, Wk and Wl obtained with U-PLS or N-PLS;
these are kept constant in the calibration values, and tu is varied
until the norm of ||Eu|| is minimized using the Gauss–Newton
method [see eq. (12)]. Once done, the analyte concentration can be
calculated by the equation corresponding to each particular
algorithm [N-PLS Eq. (10)], introducing the last value of vector tu
found by RTL. Tucker3 model is constructed usually with Nunx

components in each dimension [7], where Nunx indicates the
number of unexpected components in the unknown sample. This
last number can be adjusted, plotting su values as a function of
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Nunx, until it stabilizes at a value comparable to instrumental noise.
It should be noted that a single component unexpected in Tucker3
analysis of Eq. (12) provides the profiles corresponding to
the three dimensions, but for additional unexpected components,
the recovered profiles do not correspond to the real spectra (or
temporal profile).

Finally, note that N-PLS/RTL or U-PLS/RTL can easily be
extended to higher-order data, resulting in N-PLS or UPLS coupled
to residual multilinearization (N-PLS/RML or U-PLS/RML), which
surely in the near future will be increasingly applied to modern
instruments, leading to increasingly high data complexity.

3. Experimental methods

3.1. Instrumental

The measurements of fluorescence matrices were performed
on a Cary Eclipse fluorescence spectrophotometer of Varian,
equipped with two Czerny–Turner monochromator and a xenon
flash lamp connected to a microprocessor in a PC by a serial
interface IEE 488 (GPIB) equipped with a thermostatic bath. The
matrices were recorded in a quartz cell of 10 mm of path length.
The readings were made in the range of 244 at 354 nm in
excitation every 5 nm, and emission from 280 to 490 nm every
5 nm at a scan rate of 24,000 nm min�1. It was used for 13 cycles
with a time of 90 s for each matrix, thus having 43�23�
13¼12,857 data points.

It was employed a thermostating bath to fix the temperature
to 35 °C. The voltage of the photomultiplier detector was
600 V and the slit of excitation and emission monochromators
was 5 nm for each one. This criterion was applied to all samples
processed.

Absorbance measurements were performed on a Beckman DU
640 (Fulletron USA) using a quartz cell of 10 mm path length in the
range from 240 to 360 nm.

3.2. Reagents and solutions

Solid drugs used were as follows: carbaryl (Sigma-Aldrich),
propoxur (Sigma-Aldrich), naphthol (Sigma-Aldrich), carbendazim
(Sigma-Aldrich), thiabendazole (Sigma-Aldrich), methanol (Merck,
HPLC grade), sodium monohydrogen phosphate (Merck), sodium
hydroxide (Merck) and hydrochloric acid (Merck).

Standards solutions of carbaryl (1120 mg L�1), naphthol
(1120 mg L�1), and propoxur (1070 mg L�1) were prepared in
10.00 ml volumetric flasks by dissolving an appropriate amount
of the respective solid drug in methanol, ensuring its dissolution
applying ultrasound for 5 min and completing with the same
solvent. Solutions were prepared monthly since drugs were stable
in the organic phase. Standard interferent pesticides, thiabenda-
zole (100 mg L�1) and carbendazim (200 mg L�1), were prepared
weighing the solid drug in a 10.00 mL volumetric flask; the solid
was dissolved in methanol with ultrasound and then the volume
was completed with the same solvent.

The stock solutions of carbaryl (10.00 mg L�1), naphthol
(5.00 mg L�1), and propoxur (30.00 mg L�1) were prepared taking
aliquots of standards solutions and placed in flasks of 25.00 mL;
then methanol was evaporated to dryness with the aid of a N2

stream and carried to final volume with double distilled water.
The stock solutions of individually interferent pesticides were
prepared by taking aliquots of standards prepared, placed in flasks
of 10.00 mL, the solvent was evaporated with N2 and the final
volume was completed with double distilled water to yield
concentrations of 12.00 mg L�1 and 4.80 mg L�1, for carbendazim
and thiabendazole, respectively. All of these solutions were

prepared weekly because analytes in aqueous phase are hydro-
lyzed slowly. All solutions were stored at 8 1C.

3.3. Samples of calibration, validation and spiked interferents

� A set of 15 calibration samples was prepared by triplicate with
the three analytes together. Concentration levels were deter-
mined using a central compound design. The following con-
centration ranges were used: for carbaryl of 0.00–1.00 mg L�1,
for naphthol of 0.00–0.50 mg L�1 and for propoxur of 0.00–
4.00 mg L�1. The samples were prepared adding the analytes in
appropriate amounts to 1.00 mL of phosphate buffer (0.1 M, pH
10.2) and double distilled water to bring the final volume of
3.00 mL.

� Validation samples were prepared identically to the calibration,
but with different concentrations. Six samples were prepared
by triplicate containing the analytes at random concentrations
within the respective ranges of calibration.

� Carbendazim and thiabendazole were used as unexpected
components to generate the non-modeled signal in the calibra-
tion step. The samples contained two levels of concentration of
these interferents. Samples were prepared by triplicate on the
cell placing appropriate volumes of the respective solutions of
each analyte and the interferents, 1.00 mL phosphate buffer
(0.1 M, pH 10.2) and double distilled water to bring the final
volume to 3.00 mL.

3.4. Spiked samples of river water

The first step was filtering the samples using a microporous
membrane of cellulose acetate 22 μm in diameter with the help of
a vacuum pump. Then the absorbance spectrums in the wave-
lengths used for excitation of the calibration samples (244–
354 nm) were measured. Therefore it was possible to choose an
appropriate dilution in order to avoid the inner filter effect. They
were diluted 1:10. The three analytes were added together
to diluted samples in concentrations within the linear range.
Fluorescence measurements were performed as described for the
calibration samples.

3.5. Software

All routines used to perform the calculations described in this
work were written in MATLAB [34]. Those for applying PARAFAC
and N-PLS (without the second-order advantage, provided by RTL)
are available on Internet, thanks to Bro [35]. U-PLS/RTL and N-PLS/
RTL were developed by our group and successfully incorporated
in a graphical interface (MVC2 or MVC3), the type already
published for first-order multivariate calibration [36], available at
http://www.chemometry.com/Index/Links%20and%20downloads/
Programs.html. The routine to correct the Rayleigh scattering used
was provided by Zepp [37].

4. Results

This system has the complexity of evolution over time, because
carbaryl and propoxur in basic medium are hydrolyzed. This
complexity can be turned into an advantage when the data is
analyzed by third-order methods, which can discriminate the
components of a mixture by their behavior in the three dimen-
sions of the studied system (in our case excitation-emission-time).
Fig. 1 and 2 shows the behavior of two samples, one with carbaryl
and another with propoxur, both under alkaline conditions. Here it
can appreciate how the signal of the carbaryl and propoxur species
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decrease as alkaline hydrolysis proceeds. The carbaryl analyte has
the fastest kinetic and it presents the particularity that its hydro-
lysis product is also fluorescent (naphthol); therefore, their sam-
ples show how the signal of carbaryl decreases to result in a
stronger signal corresponding to naphthol.

Before preparing the calibration samples the system variables
that influence the kinetics of reaction must be optimized, so the
relationship between the reaction time and the speed of measure-
ment should be taken into account. If time is extremely long, the
technique is not practical. And if the reaction is too rapid
compared with the time of measurement of one EEM, the
measures will lose the intrinsic multilinearity of the data, thereby
making it impossible for further processing by chemometric
algorithms. In order to keep the multilinearity characteristic of
data, the EEMs must be measured as quickly as possible, so that
between measuring an emission spectrum and another, the reac-
tion has not advanced significantly and thus each EEM reflects a
sample instant. Therefore, making a risk-benefit ratio between the
practicality of the technique, the scanning speed and increased
fluorometer measurement noise by increasing the speed, set as the
optimization target time in 15 min.

The influence of pH and temperature on kinetics of the alkaline
hydrolysis as affect at fluorescent signal of the three analytes was
studied. It can be concluded that the optimum operating pH is 10.2
and the optimum working temperature is 35 1C.

4.1. Preprocessing of data

The proposed chemometric algorithms require trilinear data.
This means that the data matrix can be decomposed linearly on
vectors of each dimension containing information about how the
analyte behaves in this particular dimension. In our case a vector

would be emission spectrum, other excitation spectrums, and
another time behavior.

The data of the system under study has the problem in that
besides having the signal of analytes studied and unexpected
components, all samples have a Rayleigh signal. This signal does
not respond to trilinear modeling. Therefore, before analyzing any
data it was necessary to ‘clean’ this signal of samples. A routine
written in MATLAB was applied to each sample to replace the data
in the area affected by such dispersion on EEMs with their
polynomial estimate [37].

4.2. Results of the multivariate calibration

4.2.1. Validation samples
Validation samples were analyzed by PARAFAC, N-PLS and U-

PLS to corroborate the predictive ability of these three models. The
samples were measured under optimum conditions and following
the procedure described in the Experimental Methods section.

One of the main difficulties in this system is that one of the
compounds of interest (naphthol) is an analyte and it is also a
reaction product of one of the other analytes. This fact generates
linear dependencies or collinearities between naphthol and car-
baryl and complicates the analysis using the PARAFAC method. In
previous works, this problem was solved using multiple linear
regressions to the obtained scores [11,13].

As expected, the PARAFAC model showed certain difficulties in
obtaining precise and accurate results. The number of components
was established to be equal to 4 (N¼4) due to the observation of
PARAFAC error adjustment (16.43, 6.09, 4.54, 2.22, 2.07, errors in
arbitrary fluorescence units (AFU) for one to five PARAFAC com-
ponents respectively), thus it means that the system has four
components with different behaviors (carbaryl, propoxur, original
naphthol and naphthol produced by hydrolysis of carbaryl).

Fig. 1. Contour plots corresponding to EEMs versus time for the hydrolysis of a propoxur solution (3.00 mg L�1) at pH 10.2. The legend shows different colored fluorescence
intensities in UA. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Contour plots corresponding to EEMs versus time for the hydrolysis of a carbaryl solution (1.00 mg L�1) at pH 10.2. The legend shows different colored fluorescence
intensities in UA. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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It worked with the non-negativity restriction for all dimensions,
i.e. the scores and loadings are not negative. The recovery of the
excitation and emission profiles was successful, but not so for time
profiles (Fig. 3).

The estimated concentrations of the validation samples by
PARAFAC were not successful; REP% of 14.00, 8.50 and 5.40 for
carbaryl, naphthol and propoxur, respectively, were obtained.

In Fig. 3 in the plot corresponding to the temporal profile one
can see that the curve for the original naphthol (blue line) does not
agree with its behavior. Since, as previously stated, it is not
susceptible to hydrolysis, its kinetic curve should be constant.
The large linear dependence of the system justifies the fact that
PARAFAC does not provide good results, as expected. To solve this
problem PARAFAC scores were processed for multiple linear
regression (MLR) as was done in a previous work [11,13]; however,
due to the presence of an extra analyte (propoxur), it does not
succeed in this analysis.

Then N-PLS and U-PLS models were applied. The algorithms
mentioned could provide better results because of the character-
istics of the system. The number of latent variables was deter-
mined according to the criterion of Haaland, applying cross-
validation technique as described above. This one reported that
carbaryl predictions needed only two latent variables, two for
naphthol predictions and three for propoxur predictions. The
predictions of validation samples with the latent variables
proposed were not correct again for carbaryl and naphthol, but
they were correct for propoxur. This is due to the strong linear

dependence mentioned above between the species carbaryl and
naphthol. Therefore in order to obtain the optimal number of
latent variables for all three analytes, the residual of predictions of
the validation samples was set as a function of the number of
latent variables to the N-U-PLS and U-PLS methods. In this way
four latent variables were determined, which are enough to
quantify naphthol, three to carbaryl and three to propoxur, by
N-PLS and U-PLS.

The fact that the number of factors is greater than the number
of analytes, in some cases, is because PLS takes into account
additional factors of the signal of analytes that produce spectral
variation, for example the reaction progress in the measurement
time, temperature stabilization, dispersion of signals, non-linear-
ities, among others. Therefore more factors are required to explain
the variance in the data. The results of prediction are expressed in
Table 1. Table 1 presents the root mean squared error of perdition
(RMSEP) and the relative error of prediction (REP%) calculated;
these showed very good results for N-PLS and U-PLS.

4.2.2. Samples with interferents
Some substances commonly present with the pesticides

studied here may interfere with the determination of their
concentration using the proposed methods. Many samples con-
taining carbaryl, naphthol and propoxur may possess among
of other pesticides in their composition. The possibility that
the signal of fluorescence of these substances affect to the

Fig. 3. Spectral profiles obtained by PARAFAC when processing a validation sample containing carbaryl (0.60 mg L�1), naphthol (0.20 mg L�1) and propoxur (1.75 mg L�1).
All profiles are normalized to unity.
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concentration predictions was examined. The interference sub-
stances studied were carbendazim and thiabendazole, at two
levels of concentrations of each one.

Four samples by triplicate containing the analytes in aqueous
solution, combined with amounts of carbendazim and thiabendazole,

were prepared. Predictions concentrations were made for each
analyte studied in all samples. The predictions were made using
N-PLS and U-PLS assisted with RTL. Besides the latent variables
required for each analyte, an extra variable for each interferent in
the RTL procedure was necessary. The profiles obtained for these

Table 1
Results predicted by N-PLS and U-PLS for the validation samples in mg L�1. CAR¼Carbaryl; NAP¼Naphthol; PRO¼Propoxur.

Nominal N-PLS predictionsa U-PLS predictionsa

CAR NAP PRO CAR NAP PRO CAR NAP PRO

0.00 0.35 1.50 0.024 (2) 0.35 (3) 1.54 (4) 0.008 (1) 0.34 (2) 1.53 (1)
0.30 0.00 2.60 0.31 (1) 0.01 (2) 2.66 (3) 0.31 (1) 0.06 (2) 2.60 (4)
0.45 0.15 0.00 0.45 (2) 0.15 (1) 0.05 (1) 0.48 (3) 0.14 (2) 0.089 (2)
0.60 0.20 1.75 0.61 (2) 0.19 (2) 1.74 (2) 0.62 (2) 0.19 (3) 1.77 (2)
0.65 0.45 1.40 0.66 (3) 0.46 (3) 1.39 (3) 0.68 (3) 0.43 (1) 1.41 (1)
0.75 0.30 3.10 0.76 (1) 0.28 (2) 3.13 (1) 0.76 (2) 0.28 (2) 3.20(2)

RMSEP 0.01 0.01 0.04 0.02 0.02 0.05
REP % 1.90 2.60 1.40 2.80 3.70 1.60

a Standard deviation in parentheses corresponds to the last significant figure. Average of three determinations.

Fig. 4. Spectral profiles obtained by RTL when processing a sample with the three analytes together with carbendazim (2.00 mg L�1) and thiabendazole (0.8 mg L�1).
All profiles are normalized to unity.

Table 2
Results predicted by N-PLS and U-PLS for samples with interferents in mg L�1. CAR¼Carbaryl; NAP¼Naphthol; PRO¼Propoxur; CBZ¼Carbendazim; and TBZ¼
Thiabendazole.

Nominal N-PLS predictionsa U-PLS predictionsa

CAR NAP PRO CBZ TBZ CAR NAP PRO CAR NAP PRO

0.20 0.20 3.10 2.00 0.80 0.21 (2) 0.19 (1) 3.20 (3) 0.25 (1) 0.25 (6) 3.2 (1)
0.45 0.35 1.80 2.00 0.80 0.46 (1) 0.33 (2) 1.83 (2) 0.52 (1) 0.32 (2) 1.80 (3)
0.20 0.20 3.10 2.80 1.12 0.21 (2) 0.18 (3) 3.0 (1) 0.25 (3) 0.21 (3) 2.90 (2)
0.45 0.35 1.80 2.80 1.12 0.45 (2) 0.34 (2) 1.90 (2) 0.50 (2) 0.31 (2) 1.90 (2)

RMSEP 0.01 0.01 0.06 0.02 0.03 0.08
REP % 1.90 2.90 1.90 5.60 8.30 2.50

a Standard deviation in parentheses corresponds to the last significant figure. Average of three determinations.
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two interferents are shown in Fig. 4, which agree well with the
experimental profiles of these pesticides, and the predictions of
the samples in the presence of these interferents are provided in
Table 2. Successful results were obtained taking into account the
complexity of the samples. Comparing the values of RMSEP and
REP%, it can be seen that the best results were obtained with
N-PLS/RTL.

4.2.3. Spiked river water samples
Water samples collected from Ludueña Stream and Ibarlucea

Channel, south of the province of Santa Fe, Argentina, were
analyzed. These were filtered, their absorbance measured and
then diluted according to the protocol described in the Experi-
mental Methods section. Then their EEMs were measured in time
by triplicate in order to make a blank, and they were subsequently
predicted by the algorithms N-PLS and U-PLS assisted by RTL.
Subsequently the samples were artificially added with carbaryl,
propoxur and naphthol on the same samples, in order to make
predictions in the presence of other components forming part of
the complex signal of the matrix and background.

The five samples prepared were measured by triplicate follow-
ing the procedure described; N-PLS and U-PLS were applied to
predict them, assisted by RTL. RTL required only an extra latent
variable to ‘clean’ the EEMs data from the native signal of water
samples. Fig. 5 shows the excitation and emission profiles. It shows
that they are consistent with the highest of fluorescence reported
in the literature for dissolved organic matter of surfactants and/or

whitening agents [38]. Although the temporal profile shows an
increase in signal, taking into account the scale of the profile and
that all samples to be placed in the fluorometer show a slight
increase in signal due to stabilization with temperature, it can be
concluded that the behavior over time of this interference is
constant. The results shown in Table 3 are the average of the
predictions obtained and the value of the standard deviations is in
brackets, considering the presence of interferents as unexpected
component. Again comparing the values of RMSEP and REP% for
each analyte it can be concluded that better results were obtained
processing samples by N-PLS/RTL.

4.3. Figures of merit

In the present work we calculated figures of merit for the three
analytes, with N-PLS and U-PLS; these values are reported in
Tables 4 and 5, respectively. Sensitivity (SEN) was calculated using
equations found in the literature for third-order data [13]. Analy-
tical sensitivity (γn) was calculated from the ratio between sensi-
tivity and instrumental noise, expressed in units on mg�1 L. The
instrumental noise considered for this case was 1.7 AFU. Conver-
sely also analytical sensitivity (γn�1) was calculated in units of
mg L�1. Finally, the limit of detection (LOD) was calculated in units
of mg L�1 for each analyte.

For the samples with interferents and samples of river water
added, which used RTL, it can be seen that merit figures showed
an unfavorable change with respect to the validation samples. This
is due to the complexity of the samples and the significant spectral

Fig. 5. Spectral profiles obtained with RTL when a river water sample added artificially with the analites is processed. All profiles are normalized to unity.
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overlap. Despite this, the results were very good, demonstrating
the effectiveness of RTL to ‘clean’ the signal not modeled in the
calibration step. When the values obtained with U-PLS and N-PLS
are compared in general, it can be concluded that the best results
are always obtained with N-PLS.

5. Conclusions

The efficiency of algorithms of third-order multivariate calibra-
tion to determine three analytes together was corroborated. Using
third-order data it was possible to overcome several drawbacks of
extreme spectral overlap, increase the sensitivity and selectivity of
the system and maintain the second-order advantage to be used
when necessary. The results allowed us to propose the applied

chemometric tools (N-PLS and U-PLS) as efficient alternatives for
the quantification of pesticides in various aqueous samples.

In this paper, we were able to develop a simple, accurate, rapid,
economical and environmentally friendly method for the simulta-
neous determination of carbaryl, naphthol and propoxur in water
samples. As the analytes have fluorescent behavior, a method
based on the kinetics of hydrolysis of these compounds in an
alkaline medium with fluorescence measurements was developed.
Third-order data was processed using different chemometric
methods. The results showed that the models of N-PLS and
U-PLS are more successful than other models such as PARAFAC,
allowing quantification of the analytes even in the presence of
severe spectral overlap and interferences not modeled, thanks
to the application of the RTL procedure. The predictions in
spiked river samples with N-PLS and U-PLS showed the success
of these two methodologies for simultaneous quantification of the
analytes.
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